Liste der Anhänge anzeigen (Anzahl: 1)
LiPo an Arduino Nano Kabeldicke
Hallo Roboternetzler,
ich möchte einen LiPo-Akku als Stromversorgung an den VIN eines Arduino Nano anschließen. Bei dem Akku handelt es sich um einen 2-zelligen mit 2000mAh und 7,4V (Amazon-Link):
Anhang 34344
Soweit ich das verstanden habe müsste ich den 2-poligen T-Stecker verwenden um den Akku and den Arduino anzuschließen und den kleineren 3-poligen um die Akku-Zellen zu laden.
Nun war die Idee als Gegenstück einen männlichen T-Stecker zu kaufen und dann daran 2 Kabel festzulöten, welche ich mit GND und VIN des Arduinos verbinde.
Jedoch sind die vorhandenen Kabel am T-Stecker viel dicker als die dünnen Jumper-Kabel die ich bisher am Arduino verwendet habe. Die dicken Kabel passen auch nicht durch die von mir verwendete Lochplatine. Kann ich stattdessen einfach 2 dünne Jumper-Kabel verwenden zwischen LiPo und Arduino oder ist das eine schlechte Idee?
Nach allem was ich gelesen habe sind LiPos ja sehr launische Energiespeicher und ich würde ungern Arduino oder Akku verschmoren oder einen Wohnungsbrand verursachen :rolleyes:
Liste der Anhänge anzeigen (Anzahl: 1)
Zitat:
Zitat von
Moppi
Ich habs mit Spannungsteiler ( am ATmega328 ) gemacht (100k und 47k), da fließen nur geringe Ströme durch die Widerstände, die Spannung kann aber trotzdem sauber erkannt werden:
Bild hier
Ich tue mich mit dem Schema etwas schwer (komme wie gesagt aus der Softwareentwicklung und da ist bekanntlich alles schon verkabelt ;)). Anscheinend gibt es ja belastete und unbelastete Spannungsteiler (Quelle) und wenn ich das richtig erkenne verwendest du hier einen belasteten und liest an Pin 28 die Spannung aus (oder ist es doch Pin 21?).
Ich habe in der Größenordnung nur 5k1-, 10k- und 100k-Widerstände.
Kannst du mir sagen ob es auch ausreichen würde 2 Widerstände (als unbelasteten Spannungsteiler) wie folgt vor den Analog-Pin zu setzen (z.B. mit R1=100k und R2=10k) bzw. stattdessen sogar nur einen Widerstand zu verwenden (verstehe nicht wirklich warum beim unbelasteten Spannungsteiler mehrere in Reihe geschaltet werden müssen -> ein größerer Widerstand sollte den den gleichen Effekt haben wie 2 kleinere in Reihe, oder?):
Anhang 34347
Zitat:
Zitat von
Moppi
Gemessen werden die 12V (oder was am Akku anliegt).
Der LiPo hat, wenn es ein 11V-LiPo ist, ca. 12.6V wenn er voll geladen ist. Im Betrieb, beim Entladen, sinkt die Spannung. Erst bleibt sie nahezu konstant - sinkt nur langsam, bis sie am Schluss schnell einbricht. Ich habe viel herumprobiert. Gerade mit möglichst weit/tief entladen, wegen langer Laufzeit der Schaltung. Entscheidend ist, dass die einzelnen Akkuzellen nicht unter 2.8 bis 3.2V entladen werden dürfen. Von 3.2V bis 2.8V ist leider nicht weit, das geht dann sehr flott, am Schluss auch unter 2.6V. Und das ist dann zu viel. Einen defekten Akku habe ich schon und ein Zweiter hat eine verringerte Kapatität. Deshalb ist meine Empfehlung, die Spannung am Akku zu messen und die Grenze bei der Nennspannung des Akkus zu setzen. Heißt bei Deinem Akku, ab 7.4V irgendwie entweder die Schaltung zu trennen (gibt Schutzschaltungen für LiPos) oder wenigstens eine blinkende LED (o.ä.) zu verwenden. Dann nachladen.
Danke, die Angaben helfen schonmal immens.
Liste der Anhänge anzeigen (Anzahl: 1)
So, danke für die Hilfe. Da sowohl Hannes als auch der in Moppis Antwort zitierte Michael für R1=R2=10k Ohm vorschlagen würde ich die beiden Widerstände verwenden. Bei dem Potenziometer war mir nicht bewusst dass es die als einfache Bauteile gibt (kenne die nur in überdimensionierter Form am Verstärker). Falls ich im Elektronikgeschäft einen passenden finde ersetze ich R2 damit.
So stelle ich mir dann die Verkabelung vor - mit 8,4V am VIN und max. 4,2V am A0 und einem Kondensator für eine bessere Fehlertoleranz. Seid ihr damit einverstanden?
Anhang 34350
Liste der Anhänge anzeigen (Anzahl: 1)
Zitat:
Zitat von
021aet04
Anschließend die Verbindung der Widerstände und des Kondensators zusätzlich mit "A0" verbinden.
Bin mir nicht sicher ob ich den Satz richtig interpretiert habe. Ist das so korrekt?
Anhang 34351
Liste der Anhänge anzeigen (Anzahl: 1)
Ich versuchs mal mit einer Antwort. Ich hoffe aber, da kommen noch bessere Erklärungen und genauere!
Zumindest ist die Beschaltung des C so richtiger, bitte aber den C zwischen A0 und GND - nahe am µC, schalten!
In Verbindung mit R1 wirkt der Kondensator als Tiefpass. Allerdings verändert R2 den kapazitiven Blindwiderstand und damit die Charakteristik des Filters.
Ein Tiefpass sorgt dafür, dass hohe und sehr hohe Frequenzen gedämpft werden, bis dahin, dass sie den Filter gar nicht mehr passieren.
Jetzt haben wir hier keine Wechselspannungsanteile in der Versorgung (direkt vom Akku) so dass daher nichts ausgefiltert werden muss und kann. Da eine Gleichspannung gemessen werden soll, könnte ein Filter schon bei sehr geringer Frequenz wirksam werden. Unter nicht Beachtung von R2 kann C noch größer sein. Bei R1 = 10kOhm und C = 470nF läge die Grenzfrequenz bei ca. 33Hz. Bei 220nF für C, bei 72Hz. C hat einen Blindwiderstand (Xc), nach dem sich die Grenzfrequenz richtet, der wird hier durch den Parallelwiderstand R2 beeinflusst - meine ich. Da Du Gleichspannung messen willst und höherfrequente Störungen (ab 100, 200, 300 ... 500Hz) unterdrückt werden können, sind die 220nF schon in Ordnung so - würde ich jetzt sagen. Es kommt dann auf die Störungen an, die Du hättest - hast Du keine, brauchts keinen Filter :)
Betrachtet man die Störeinflüsse direkt am Eingangspin zum ADC - nach dem Spannungsteiler (also nicht die am Spannungsquellenausgang - LiPo), würden Frequenzen im MHz-Bereich ausgefiltert (vermutlich ab dreistelligem MHz-Bereich).
Ich würde, wegen der Klarheit, eher vielleicht dann so eine Beschaltung wählen:
Anhang 34352
Wobei der Tiefpass dicht am µC plaziert werden sollte.
Normal wird ja VCC mit AVCC verbunden, hier kann - laut Datenblatt zum mega328 - noch ein Filter aus 100nF und 10µH eingebaut werden. Wenn es den braucht (Du hast Gleichspannung aus dem Akku). Steht bei mir im Datenblatt unter: 28.6.2. Analog Noise Canceling Techniques
Ich denke, Sicherheit bekommst Du, wenn Du im Betrieb der fertigen Schaltung mit einem Oszilloskop dran gehst und das Signal am ADC-Eingang anschaust.
Außerdem ist bis jetzt noch nicht klar, was Du mit dem Nano am Ende machen willst.
MfG