Re: Wurf/Schiess-mechanismus
Hallo hoschi2,
Zitat:
Zitat von hoschi2
... mechanismus zum Werfen einer Bier-Flasche(0,3kg 0.33l) bauen ...
Ich bin ja leider etwas in Richtung Cola geprägt. Da gabs vor einiger Zeit so Juxmacher, die hatten Pfefferminzbonbons in Colaflaschen geworfen. Darauf gab es ziemlich hohe Springbrunnen.
Was meine ich damit: WENN Du statt Bier Cola nehmen könntest (vermutlich geht´s aber auch mit Bier): Pfefferminzbonbons in die Flasche werfen - Flasche mit MUNDstück, also da wo sonst der Kronkorken drauf sitzt, in eine ganz knapp anliegende Röhre stecken, die kurz, etwa Flaschenlänge und unten zu ist - abwarten was passiert. Wenn ich daran denke, was das für einen Rückstoss gibt, müsste dann eigentlich die Flasche aus der Röhre hüpfen, und das recht schnell. Für die 3 - 4 Meter will ich aber keine Garantie abgeben.
Nachteil: Du suchst einen Mechanismus - und eigentlich ist das dann eher physikalische Chemie.
Liste der Anhänge anzeigen (Anzahl: 1)
Sooo .... ich hab mal ne Runde gerechnet.
Ich hab das ganze mal von hinten angefangen, also von der Wurfparabel.
Die hab ich mit zwei Bewegungsgleichungen festgelegt :
Ve ist unsere Endgeschwindigkeit nach dem Verlassen vom Abschussmechanismus.
Die muss man in eine X und eine Y-Komponente aufteilen, da ich die Bewegung zunächst für die beiden Richtungen getrennt betrachte.
Vx = cos(alpha) * Ve
Vy = sin(alpha) * Ve
Wobei alpha der Winkel von unsere Flugrichtung beim Verlassen vom Abschussmechanismus gegen die Horizontale ist.
Mit s(t) = V * t kommt man dann auf:
x(t) = Ve*cos(alpha)*t
y(t) = Ve*sin(alpha)*t
So jetzt müssen wir noch bei y(t) die Schwerkraft berücksichtigen.
y(t) = -0.5g*t^2 + Ve*sin(alpha)*t
Reibung lass ich einfach mal außer acht, die kann man bei so kleine Strecken und Geschwindigkeiten ruhig vernachlässigen.
(Wer nörgelt muss das Gegenteil beweisen)
Jetzt können wir x(t) nach t umformen und in y(t) einsetzen.
Dann erhalten wir eine Funktion y(x) unsere Wurfparabel.
y(x) = -0.5g*([x]/[Ve*cos(alpha)])^2 + [sin(alpha) * x]/[cos(alpha)]
Schön oder ?
Da können wir jetzt für x 4m und für y 0m einsetzen.
Wenn wir jetzt ein alpha hätten, könnten wir unser Ve berechnen.
Ich hab jetzt einfach mal für alpha 45° eingesetzt.
Das hat zwei Gründe:
Erstens ist das der optimale Kompromiss zwischen Wurfhöhe und Weite.
Zweitens vereinfacht das meine Gleichung immens, da cos(45) = sin(45).
Nach etwas umgeforme und gerechne kommt man auf Ve=6.26m/s
Dann bekommen wir eine so schöne Wurfparabel :
Bild hier
Jetzt wissen wir wie schnell das unsere Dose nach dem Abschuss sein muss und im welchen Winkel wir schießen müssen.
Daraus können wir schon mal die kinetische Energie berechnen, die wir
der Dose mitgeben müssen.
E = m/2 * v^2
Da ich selten Alkohol trinke hab ich grad keine Bierdose zu Hand.
Aber ich rechne einfach mal mit 0,5kg, also einer 0,5l Dose.
Bevor der erste nörgelt ich weiß das Bier dichter ist als Wasser und das um das Bier noch ne Dose ist. Aber 0,5 rechnet sich einfach.
E = 0,5kg/2 * 6,26^2 = 9.79J
Das ist auch gleich die Arbeit die wir beim Beschleunigen der Dose verrichten.
Unsere Leistung ist P = W/t.
Also müssen wir jetzt noch wissen wie lange wir Beschleunigen.
Ich geh einfach mal davon aus, dass die Dose linear beschleunigt wird.
Also dass sowohl a(t) und auch die Bahn auf der beschleunigt wird linear sind.
Eigentlich müsste ich jetzt noch das ganze auf einer Kreisbahn berechnen,
und den Katapultarm als Hebel berücksichtigen usw. aber da ich nur grob Abschätzen will.
v(t) = a*t
s(t) = 0.5a*t^2
v(t) nach a umstellen unten in s(t) einsetzen.
Dann können wir da die 0,5m von manf einsetzen und nach t auflösen, da kommt raus : t = 0.15s
Dann ist P = 9.79J/0.15s = 65W
Das wäre eine ganze Menge.
Wenn man das ganze jetzt über ein Gummiband macht, welches man in 1,5s spannt sinds schon mal nur noch 6,5W.
Ich hoff mal da sind keine Rechenfehler oder schlimmer semantische Fehler drin.
Es ist halt schon fast ein Jahr her, das ich sowas von Hand berechnet hab.
Wenn wir sowas in der Schule machen ham wir immer unser Computermodell.
Wenn es gewünscht wird rechne das ganze noch mit Hebel und Kreisbahn.
Also als Katapult.
Sebastian