Hallo Chris,
dann also hier die fehlenden Funktionen im Code und der Schaltplan des Nucleo-Shields. Sollte dir noch etwas fehlen, gib Bescheid!
Grüß, NRicola
	Code:
	/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdbool.h"
#include "math.h"
#include "../Peripherals/LSM6DS3.h"        // Funktionen sind hier angehangen (siehe unten)
#include "../Peripherals/OLED_128x32.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
    
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c3;
SPI_HandleTypeDef hspi2;
UART_HandleTypeDef huart2;
DMA_HandleTypeDef hdma_usart2_rx;
/* USER CODE BEGIN PV */
    const uint8_t IMU_datlength = 8;        // die letzten x Messwerte werden mitgespeichert
    struct IMU_Struct IMU1;                // besteht aus IMU1.status, sowie 6 Arrays [0:IMU_datlength-1] für acc und gyr in x,y,z
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_SPI2_Init(void);
static void MX_I2C3_Init(void);
/* USER CODE BEGIN PFP */
        
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
  /* USER CODE END 1 */
  /* MCU Configuration--------------------------------------------------------*/
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
  /* USER CODE BEGIN Init */
  /* USER CODE END Init */
  /* Configure the system clock */
  SystemClock_Config();
  /* USER CODE BEGIN SysInit */
  /* USER CODE END SysInit */
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_USART2_UART_Init();
  MX_SPI2_Init();
  MX_I2C3_Init();
  /* USER CODE BEGIN 2 */
    IMU1.status=0;
    for(uint8_t i=0;i<IMU_datlength-1;i++){
            IMU1.acc_x[i] = 0;
            IMU1.acc_y[i] = 0;
            IMU1.acc_z[i] = 0;
            IMU1.gyr_x[i] = 0;
            IMU1.gyr_y[i] = 0;
            IMU1.gyr_z[i] = 0;
    }
    //--------------------------------
    Mot001_SS_Disable();    // SS auf high
    IMU1_SS_Disable();    // SS auf high
    HAL_Delay(20);        // 20ms start-up time für IMUs
    
    //        OLED-Display
    uint16_t OLED_refresh_cntr=0;
    uint16_t OLED_refresh_max=5;
    OLED_Init();
    OLED_Clear_Screen();
    OLED_IMU1_vars();
    
    
  /* USER CODE END 2 */
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
    /* USER CODE BEGIN 3 */
        IMU1 = IMU1_Read_Values();
        if(OLED_refresh_cntr>=OLED_refresh_max){    OLED_refresh_cntr=0; OLED_IMU1_vars();    // Messwerte des IMU1 anzeigen
        }else{                        OLED_refresh_cntr++;
        }
        
  }
  /* USER CODE END 3 */
}
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    Error_Handler();
  }
}
/**
  * @brief I2C3 Initialization Function
  * @param None
  * @retval None
  */
static void MX_I2C3_Init(void)
{
  /* USER CODE BEGIN I2C3_Init 0 */
  /* USER CODE END I2C3_Init 0 */
  /* USER CODE BEGIN I2C3_Init 1 */
  /* USER CODE END I2C3_Init 1 */
  hi2c3.Instance = I2C3;
  hi2c3.Init.ClockSpeed = 400000;
  hi2c3.Init.DutyCycle = I2C_DUTYCYCLE_2;
  hi2c3.Init.OwnAddress1 = 0;
  hi2c3.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  hi2c3.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  hi2c3.Init.OwnAddress2 = 0;
  hi2c3.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  hi2c3.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  if (HAL_I2C_Init(&hi2c3) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN I2C3_Init 2 */
  /* USER CODE END I2C3_Init 2 */
}
/**
  * @brief SPI2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_SPI2_Init(void)
{
  /* USER CODE BEGIN SPI2_Init 0 */
  /* USER CODE END SPI2_Init 0 */
  /* USER CODE BEGIN SPI2_Init 1 */
  /* USER CODE END SPI2_Init 1 */
  /* SPI2 parameter configuration*/
  hspi2.Instance = SPI2;
  hspi2.Init.Mode = SPI_MODE_MASTER;
  hspi2.Init.Direction = SPI_DIRECTION_2LINES;
  hspi2.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi2.Init.CLKPolarity = SPI_POLARITY_HIGH;
  hspi2.Init.CLKPhase = SPI_PHASE_2EDGE;
  hspi2.Init.NSS = SPI_NSS_SOFT;
  hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi2.Init.CRCPolynomial = 10;
  if (HAL_SPI_Init(&hspi2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI2_Init 2 */
  /* USER CODE END SPI2_Init 2 */
}
/**
  * @brief USART2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART2_UART_Init(void)
{
  /* USER CODE BEGIN USART2_Init 0 */
  /* USER CODE END USART2_Init 0 */
  /* USER CODE BEGIN USART2_Init 1 */
  /* USER CODE END USART2_Init 1 */
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 115200;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART2_Init 2 */
  /* USER CODE END USART2_Init 2 */
}
/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{
  /* DMA controller clock enable */
  __HAL_RCC_DMA1_CLK_ENABLE();
  /* DMA interrupt init */
  /* DMA1_Stream5_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Stream5_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Stream5_IRQn);
}
/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, LED_GN_Pin|LED_RD_Pin|Mot003_Status_Pin|Mot002_Status_Pin
                          |IMU2_SS_Pin|IMU3_SS_Pin, GPIO_PIN_RESET);
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOC, IMU1_Status_Pin|IMU2_Status_Pin|Mot001_Status_Pin|Mot003_SS_Pin
                          |IMU3_Status_Pin, GPIO_PIN_RESET);
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0|IMU1_SS_Pin|Mot001_SS_Pin|HDMode_LED_Pin
                          |Mot002_SS_Pin, GPIO_PIN_RESET);
  /*Configure GPIO pins : Reset_SW_Pin Hall_Detection_Button_PC14_Pin */
  GPIO_InitStruct.Pin = Reset_SW_Pin|Hall_Detection_Button_PC14_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  /*Configure GPIO pins : LED_GN_Pin LED_RD_Pin Mot003_Status_Pin Mot002_Status_Pin
                           IMU2_SS_Pin IMU3_SS_Pin */
  GPIO_InitStruct.Pin = LED_GN_Pin|LED_RD_Pin|Mot003_Status_Pin|Mot002_Status_Pin
                          |IMU2_SS_Pin|IMU3_SS_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  /*Configure GPIO pins : IMU1_Status_Pin IMU2_Status_Pin Mot001_Status_Pin Mot003_SS_Pin
                           IMU3_Status_Pin */
  GPIO_InitStruct.Pin = IMU1_Status_Pin|IMU2_Status_Pin|Mot001_Status_Pin|Mot003_SS_Pin
                          |IMU3_Status_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  /*Configure GPIO pins : PB0 IMU1_SS_Pin Mot001_SS_Pin HDMode_LED_Pin
                           Mot002_SS_Pin */
  GPIO_InitStruct.Pin = GPIO_PIN_0|IMU1_SS_Pin|Mot001_SS_Pin|HDMode_LED_Pin
                          |Mot002_SS_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  /*Configure GPIO pins : Mot002_Error_Pin_Pin Mot003_Error_Pin_Pin Mot001_Error_Pin_Pin HDMode_SW_Pin */
  GPIO_InitStruct.Pin = Mot002_Error_Pin_Pin|Mot003_Error_Pin_Pin|Mot001_Error_Pin_Pin|HDMode_SW_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  /* USER CODE END Error_Handler_Debug */
}
#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
//-------------------------------------------------------------------------------
//---------- Inhalt LSM6DS3.c ---------------------------------------------------
//-------------------------------------------------------------------------------
void IMU1_config(void){
    
    const uint8_t CTRL1_XL_addr    = 0x10;
    const uint8_t CTRL1_XL_write    = 0x3B;        // 0011_10_11
    const uint8_t CTRL2_G_addr    = 0x11;
    const uint8_t CTRL2_G_write      = 0x34;    // 0011_01_0_0
    Send_2Bytes_IMU1(CTRL1_XL_addr,CTRL1_XL_write);
    Send_2Bytes_IMU1(CTRL2_G_addr,CTRL2_G_write);
}
struct IMU_Struct IMU1_Read_Values(void){
    const uint8_t WHO_AM_I = 0x69;            // ist die korrekte Antwort, falls der Sensor da ist
    const uint8_t addr_WHO_AM_I_read = 0x8F;
    const uint8_t addr_CTRL1_XL_read = 0x90;
    const uint8_t addr_acc_x_l_read  = 0xA8;
    const uint8_t addr_acc_x_h_read  = 0xA9;
    //------------------------------        
    //--------------------------------------------------
    if (Read_1Byte_IMU1(addr_WHO_AM_I_read) == WHO_AM_I){    // Wenn IMU1 auf WHO_AM_I reagiert,
        IMU1.status=1;                    // 
        if (Read_1Byte_IMU1(addr_CTRL1_XL_read) == 0){        IMU1_config();        // Falls der Accelerometer im Sensor nicht korrekt konfiguriert ist, konfiguriere nochmal neu
                                    HAL_GPIO_TogglePin(LED_GN_GPIO_Port, LED_GN_Pin);
        }
    }else{
        IMU1.status=0;                    // Status: Sensor ist nicht angeschlossen
    }
    if(IMU1.status==1){                    // Wenn IMU1 erkannt, 
        IMU1_Status_SET();                // dann Status-LED anschalten
    }else{
        IMU1_Status_RESET();                // ansonsten Status-LED ausschalten
    }
    
    IMU1.acc_x[IMU_datlength-1]=Read_1Byte_IMU1(addr_acc_x_l_read);    // einen Messwert lesen
    return IMU1;
}
void Send_2Bytes_IMU1(uint8_t Byte1,uint8_t Byte2){
        const uint8_t timeout = 10;
        uint8_t TxBuffer[2];
            TxBuffer[0]=Byte1;
            TxBuffer[1]=Byte2;
        IMU1_SS_Enable();                // SS auf low
        HAL_SPI_Transmit(&hspi2, TxBuffer, 2, timeout); 
        IMU1_SS_Disable();                // SS auf high
}
uint8_t Read_1Byte_IMU1(uint8_t Byte){
        const uint8_t timeout = 10;
        uint8_t TxBuffer[2];
            TxBuffer[0]=Byte;            // Adresse des Read-Bytes
            TxBuffer[1]=0;
        uint8_t RxBuffer[2];
        IMU1_SS_Enable();                // SS auf low
        HAL_SPI_TransmitReceive(&hspi2, TxBuffer, RxBuffer, 2, timeout);
        IMU1_SS_Disable();                // SS auf high
        return RxBuffer[1];
}
 
						
					
Lesezeichen