Hallo Helmut,
der Lernerfolg einer Mustererkennung oder eines Dekoders ist ein anderer als der Lernerfolg eines autonomen Roboters. Mein System freut sich, wenn es genug Futter findet.
Die Frage muss also lauten: "wie weiß Dein System, ob es genug Futter gefunden hat?"
Dieser Hunger-Mechanismus ist schon vorbereitet. Es gibt eine Hunger-Zelle (0x05). Die noch zu programmierende Logik wird dem GI-System damit ab und an mal "Hunger" signalisieren.
Dann kurvt es rum. Dabei erfährt es eine Bestrafung zum Beispiel dadurch, dass sich die Umwelt nicht mehr bewegt. Dann hat es sich festgefahren. Und muss andere Wege finden und diese Wege optimieren.
Und irgendwann gibt es eine besondere Lampenkombination an seinen Eingängen (meinetwegen alle vier Eingänge auf high), die dazu führen, dass der Hunger verschwindet.
Mir fehlt immer noch der Umwelt-Chip, also das Gegenstück zur GI. Damit fang ich erst an, wenn ich keine gröberen Fehler im GI-System mehr erkennen kann.
Dann kommt auch die Hunger-Geschichte mit dazu.
Viele Grüße
Wolfgang
---------------
Nachtrag. ein anderer "Umwelt"-Chip könnte die GI alllerdings dazu bringen, dass er auch als Dekoder funktioniert. Jedesmal, wenn er die richtige Ausgangskombination als Funktion der Eingänge "würfelt", wird die GI belohnt und die "Links" manifestieren sich.
Das funktioniert an sich wie bei Dir. Nur Du machst alles mit der gleichen Software: lehren und lernen. Und ich verwende einen Lehrer (= "Umweltchip"), den man nach Benutzung einfach abkoppeln kann. Das spart knappen Flash-Speicher im Schüler.
Viele Grüße
Wolfgang
Lesezeichen