- fchao-Sinus-Wechselrichter AliExpress         
Ergebnis 1 bis 10 von 66

Thema: Sensorfusion mit unterschiedlicher statistischer Fehlerrate

Baum-Darstellung

Vorheriger Beitrag Vorheriger Beitrag   Nächster Beitrag Nächster Beitrag
  1. #9
    Erfahrener Benutzer Roboter Genie
    Registriert seit
    07.04.2015
    Beiträge
    908
    Vielleicht sollte man das Problem mal herunterbrechen und überhaupt eine Erwartungshaltung beschreiben:

    Bei einem Sensor und einer Messung hast Du einen Messwert, den Du als Ausgabewert weiter verwendest. Ggf. gibst Du die Varianz mit aus.

    Die Messung mit zwei Sensoren gleicher Varianz ist wie die wiederholte Messung mit einem Sensor. Der Mittelwert als Ausgabewert verbessert sich mit Anzahl der Messungen, wenn es eine Normalverteilung ist. Nebenerkenntnis: Der Mittelwert liegt immer zwischen Minimum und Maximum der Messreihe. Die Varianz sinkt mit steigender Anzahl Messungen.

    Bei der Messung mit zwei Sensoren unterschiedlicher Varianz würde man unwillkürlich annehmen, dass der genauere Sensor das bessere Ergebnis angibt. Bei einer "Mittelwertbildung" würde man die Varianzen als Gewichtung heranziehen. Der Ausgabewert würde also immer zum Wert des besseren Sensors tendieren. (Merke: Wenn bei wiederholten Messungen trotz unterschiedlicher Varianzen nicht annähernd die gleichen Mittelwerte herauskommen, ist irgendwas im System nicht normalverteilt. So z.B. lassen sich systematische Messfehler filtern.)

    Bei drei Sensoren unterschiedlicher Varianzen haben wir unterschiedliche Erwartungshaltungen: Einerseits gehen wir davon aus, dass Güte (kleine Varianz) immer noch bestimmend ist, der Ausgabewert also zum Sensor der geringsten Varianz tendiert. Bsp:
    L1= 100 (Sig = 0.1)
    L2= 105 (Sig = 0.1)
    L3= 110 (Sig = 0.05)
    Die Tendenz würde sagen, der "wahre" Messwert liegt eher bei 110, als bei 100. Wir "trauen" dem besseren Sensor mehr.

    Andererseits dürfen wir nicht ignorieren, dass bei einer guten Übereinstimmung der "schlechteren" Sensoren der gute Sensor einen Ausreißer produzieren kann. Beispiel:
    L1= 100 (Sig = 0.1)
    L2= 105 (Sig = 0.1)
    L3= 150 (Sig = 0.05)

    Hier würden L1 und L2 trotz geringerem Vertrauen durch die gute Übereinstimmung den Wert von L3 quasi überstimmen. Der Ausgabewert wäre wohl wesentlich näher an L1/L2 als an L3 anzunehmen.

    Wenn wir diese Fälle jetzt berücksichtigen, können wir zumindest tendenzielle Änderungen vom zu erstellenden Fusionsalgorithmus ableiten:
    Schieben wir den Messwert des guten Sensors zu den anderen beiden Sensoren, verschiebt sich der Ausgabewert zum guten Sensor hin.
    Schieben wir den Messwert von einem der schlechteren Sensoren vom "Zentrum" (den anderen beiden Sensoren) weg, tangiert auch dies den Ausgabewert, aber mit einer geringeren Gewichtung.

    Ohne jetzt ein Modell für das Problem gesucht zu haben, die Frage an die Runde: Ist das zu erwartende Verhalten so korrekt?
    Geändert von Holomino (01.09.2018 um 08:34 Uhr)

Ähnliche Themen

  1. Sensorfusion Kompass und Ultraschall (Zeitstempel?)
    Von BattleBot im Forum Robby RP6
    Antworten: 1
    Letzter Beitrag: 13.01.2013, 02:46
  2. Infos zu den Themen Sensorfusion / Kalman-Filterung?
    Von katakombi_ im Forum Sensoren / Sensorik
    Antworten: 2
    Letzter Beitrag: 28.01.2005, 18:44

Berechtigungen

  • Neue Themen erstellen: Nein
  • Themen beantworten: Nein
  • Anhänge hochladen: Nein
  • Beiträge bearbeiten: Nein
  •  

Solar Speicher und Akkus Tests