-         
Seite 2 von 7 ErsteErste 1234 ... LetzteLetzte
Ergebnis 11 bis 20 von 66

Thema: Sensorfusion mit unterschiedlicher statistischer Fehlerrate

  1. #11
    Erfahrener Benutzer Robotik Einstein
    Registriert seit
    09.10.2014
    Beiträge
    4.281
    Anzeige

    hallo,
    danke erst mal für eure Antworten!
    In der Tat wäre ein Kalman oder Monte-Carlo-Filter zu komplizirt, es sollte ja einfacher sein, quasi hinkend, aber in die richtige Richtung.


    Ich hatte auch schon die Idee, die Messwerte nach ihrer Zuverlässigkeit zu gewichten und dann den gewichteten Durschschnitt zu bilden, aber das führt nur dazu, dass die unzuverlässigeren Sensoren immer tendenziell noch stärker verkleinert werden, was ja nicht stimmt, wenn die Mess-Schwerpunkte der zuverlässigeren Sensoren größer als jene sind.
    Edit: diese Befürchtung war nicht zutreffend!
    Das vorherige Ausfiltern absoluter Ausreißer ist ntl. schon sinnvoll, das könnte man per vorgeschaltetem Medianfilter tun, aber das ist nicht sehr selektiv, man müsste das eher mathematisch beschreiben (z.B. "größer als 3 sigma vom gemeinsamen Mittelwert entfernt" etc).


    - - - Aktualisiert - - -

    EDIT:

    ah - hat sich mit manfs Post überschnitten:
    dies hier scheint der richtige Ansatz zu sein:

    Gewichtung von statistisch streuenden Größen
    https://de.wikipedia.org/wiki/Gewich...%C3%B6%C3%9Fen

    Gewichtung von Messgrößen
    https://de.wikipedia.org/wiki/Gewich...%C3%B6%C3%9Fen

    Gewichtung von Messgrößen
    In der Messtechnik kann es angebracht sein, verschiedene Messwerte mit den Kehrwerten ihrer Unsicherheiten zu gewichten. Hierdurch wird erreicht, dass bei weiteren Berechnungen Werte mit kleineren Unsicherheiten entsprechend stärker gewichtet werden.
    Jetzt ist noch unklar, wie sich die "Unsicherheit" aus der Standardabweichung errechnet - kann man das einfach gleichsetzen...?

    - - - Aktualisiert - - -


    UPDATE:

    es scheint DOCH zu klappen, was ich zuerst probiert habe, mit der "Zuverlässigkeit"=(1-Standardabweichung)

    Standardabw.
    20% =0,2; Zuverlässigkeit = 1-0,2 = 0,8
    10% =0,1; Zuverlässigkeit = 1-0,1 = 0,9
    5% =0,05; Zuverlässigkeit = 1-0,05 = 0,95

    Summe aller Zuverlässigkeiten:
    0.8+0.9+0.95= 2,65


    1.Fall
    Sensor1 0,8*100= 80
    Sensor2 0,9*110= 99
    Sensor3 0,95*90= 85,5
    80+99+85,5 = 264,5

    264,5/2,65= 99,8 <<< !

    2.Fall:
    Sensor1 0.8*20 = 16
    Sensor2 0,9*30= 27
    Sensor3 0,95*5= 4,75
    16+27+4,75 = 47,75

    47,75/2,65 = 18,65 <<< !


    schein tendenziell doch zu stimmen, was meint ihr (insb. wenn man jetzt nicht nur 3, sondern deutlich mehr Sensoren hätte, und wenn man genauert definiert, was ein Ausreißer ist und was nicht)?

    - - - Aktualisiert - - -

    jetzt mal mit Kehrwert der Standardabw.:

    Standardabw.
    20% =0,2; Kehrwert = 1/0,2 = 5
    10% =0,1; Kehrwert = 1/0,1 =10
    5% =0,05; Kehrwert = 1/ 0,05 = 20

    Summe aller Kehrwerte:
    5+10+20 = 35


    1.Fall
    Sensor1 5*100= 500
    Sensor2 10*110= 1100
    Sensor3 20*90= 1800
    500+1100+1800 = 3400

    3400/35 = 97,14<<< !

    2.Fall:
    Sensor1 5*20 = 100
    Sensor2 10*30= 300
    Sensor3 20*5= 100
    100+300+100 = 500

    500/35 = 14,28 <<< !


    sieht auch vernünftig aus!
    Hier bei den Kehrwerten der Standardabw. wird die Sensorgenauigkeit etwas stärker gewichtet als oben bei der "Zuverlässigkeit"=(1-Standardabweichung), das würde ich dann auch tatsächlich bevorzugen!



    edit, ergänzt:
    Variante: Varianz statt Standardabweihung:

    jetzt also mit Kehrwert der Varianzen gewichtet:

    Standardabw. Varianz Kehrwert
    0,2 -> 0,04 Kehrwert = 25
    0,1 -> 0,01; Kehrwert = 100
    5% =0,025; Kehrwert = 400
    Summe aller Kehrwerte: 525


    1.Fall
    Sensor1 25*100= 2500
    Sensor2 100*110= 11000
    Sensor3 400*90= 36000
    Summe = 49500

    49500/525= 94,3 <<< !



    2.Fall:
    Sensor1 25*20 = 500
    Sensor2 100*30= 3000
    Sensor3 400*5= 2000
    Summe = 5500

    5500/525= 10,5 <<< !
    Geändert von HaWe (02.09.2018 um 09:49 Uhr)
    ·±≠≡≈³αγελΔΣΩ∞ Schachroboter:www.youtube.com/watch?v=Cv-yzuebC7E Rasenmäher-Robot:www.youtube.com/watch?v=z7mqnaU_9A8

  2. #12
    Erfahrener Benutzer Roboter Genie Avatar von Moppi
    Registriert seit
    18.03.2018
    Beiträge
    853
    Blog-Einträge
    7
    - gestrichen -

  3. #13
    Erfahrener Benutzer Roboter-Spezialist
    Registriert seit
    07.04.2015
    Beiträge
    411
    Standardabweichung und Varianz sind absolute Werte. Bei Deiner Aufgabenstellung wächst die Standardabweichung mit dem Messwert. Das berücksichtigst Du nicht.

  4. #14
    Erfahrener Benutzer Robotik Einstein
    Registriert seit
    09.10.2014
    Beiträge
    4.281
    stimmt, ich habe sie selber (als rel. Fehler) näherungsweise ermittelt über den Messbereich (daher 5% oder 10% oder 20%), also

    rel.Fehler = (Sollwert-Messwert) / Sollwert
    die rel.Fehler dann quadriert,
    dann alle Quadrate aufsummiert
    durch die Anzahl der Messungen dividiert ("rel. Varianz")
    und daraus die Wurzel gezogen ("rel.Standardabweichung")

    Ich wüsste jetzt nicht, wie ichs besser machen könnte, hast du einen besseren, praktikableren Vorschlag?
    ·±≠≡≈³αγελΔΣΩ∞ Schachroboter:www.youtube.com/watch?v=Cv-yzuebC7E Rasenmäher-Robot:www.youtube.com/watch?v=z7mqnaU_9A8

  5. #15
    Erfahrener Benutzer Roboter-Spezialist
    Registriert seit
    07.04.2015
    Beiträge
    411
    Ja, den hätte ich. Aber Du solltest selber darauf kommen, wenn Du darüber nachdenkst, was mit Deiner Abweichung absolut und relativ passiert, wenn Du die doppelte Distanz misst.

  6. #16
    Erfahrener Benutzer Robotik Einstein
    Registriert seit
    09.10.2014
    Beiträge
    4.281
    Zitat Zitat von Holomino Beitrag anzeigen
    Ja, den hätte ich. Aber Du solltest selber darauf kommen, wenn Du darüber nachdenkst, was mit Deiner Abweichung absolut und relativ passiert, wenn Du die doppelte Distanz misst.
    die absoluten Ungenauigkeiten sind ja tatsächlich in etwa proportional zur Entfernung,
    und die relativen Ungenauigkeiten, die hier einfließen, relativ gleichförmig über die Messdistanzen,
    und ich messe ja die gleichen Sollwerte von Sensor zu Sensor.

    D.h. wenn ein Hindernis in 10cm Entfernung ist, dann misst ein Sensor mit 5% SA exakter als einer mit 20% SA,
    und wenn es in 1m Distanz ist, dann ebenfalls: in jedem Falle wären also die Messwerte gleichsinnig zu gewichten, was ich ja tue. (Klar wäre ein Kalmanfilter u.U schon besser!)


    Von daher sehe ich jetzt noch nicht, was ich hier systematisch falsch machen würde -
    Wie wäre also dein Vorschlag?
    ·±≠≡≈³αγελΔΣΩ∞ Schachroboter:www.youtube.com/watch?v=Cv-yzuebC7E Rasenmäher-Robot:www.youtube.com/watch?v=z7mqnaU_9A8

  7. #17
    Erfahrener Benutzer Roboter-Spezialist
    Registriert seit
    07.04.2015
    Beiträge
    411
    Du denkst zu einfach.
    Wenn Du zwei Sensoren mit 10% Messfehler hast, die 100cm und 120cm messen, liegt der gewichtete Mittelwert nicht bei 110cm. Absolut misst der eine auf +/-10cm, der andere auf +/-12cm genau.

  8. #18
    Erfahrener Benutzer Robotik Einstein
    Registriert seit
    09.10.2014
    Beiträge
    4.281
    nein, sie messen beide bei 10% rel. Fehler auf 1m auf durchschnittlich (!) (absolut) 10cm genau, denn die Genauigkeit bemisst sich am echten Wert, nicht am (ggf. falsch gemessenen) Messwert,
    und ist der echte Wert 120cm, dann haben beide mit 10% rel. Standardabw. 12cm durchschnittl. Messfehler.

    einer mit 20% rel. Standardabw. hätte dann bei 1m allerdings 20cm durchschn. absoluten Fehler.

    PS,
    die Gewichtung erfolgt dann per Multiplikation der Messwerte mit dem Kehrwert der Unsicherheit, wie Wiki schrieb:

    "Gewichtung von Messgrößen
    In der Messtechnik kann es angebracht sein, verschiedene Messwerte mit den Kehrwerten ihrer Unsicherheiten zu gewichten. Hierdurch wird erreicht, dass bei weiteren Berechnungen Werte mit kleineren Unsicherheiten entsprechend stärker gewichtet werden. "

    Ich verstehe daher noch nicht, was hier systematisch wirklich falsch ist, und das Ergebnis gibt ja auch nur eine verlässlichere Tendenz, keine absolute erkenntnistheoretische Gewissheit!

    - - - Aktualisiert - - -

    ich rechne jetzt noch mal dein Beispiel mit zwei 10%-"unsicheren" Sensoren durch, wo einer 100cm misst und der andere 120cm:

    S1: (1/0,1) *100 = 1000
    S2: (1/0,1) *120 = 1200

    (1/0,1) + (1/0,1) = 20

    (1000+1200)/20 = 110

    stimmt doch, oder?
    In diesem Falle wäre das identisch mit dem arithm. Mittel, und bei 2 gleichermßen ungenauen Sensoren wäre das auch das, was ich statistisch erwarten würde.
    ·±≠≡≈³αγελΔΣΩ∞ Schachroboter:www.youtube.com/watch?v=Cv-yzuebC7E Rasenmäher-Robot:www.youtube.com/watch?v=z7mqnaU_9A8

  9. #19
    Erfahrener Benutzer Roboter-Spezialist
    Registriert seit
    07.04.2015
    Beiträge
    411
    Was denn jetzt überhaupt? Ist's nun ein absoluter oder ein relativer Fehler, den Du angibst?

    Wo findest Du denn im Wiki-Artikel irgendeine relative Angabe für den Fehler/ die Abweichung?
    Da steht was von Standardabweichung - das ist eine feste mathematische Größe und die ist absolut. Die hat sogar 'ne Einheit.

  10. #20
    Erfahrener Benutzer Robotik Einstein
    Registriert seit
    09.10.2014
    Beiträge
    4.281
    Zitat Zitat von Holomino Beitrag anzeigen
    Was denn jetzt überhaupt? Ist's nun ein absoluter oder ein relativer Fehler, den Du angibst?

    Wo findest Du denn im Wiki-Artikel irgendeine relative Angabe für den Fehler/ die Abweichung?
    Da steht was von Standardabweichung - das ist eine feste mathematische Größe und die ist absolut. Die hat sogar 'ne Einheit.
    Im Wiki-Artikel steht "Unsicherheit",
    ...verschiedene Messwerte mit den Kehrwerten ihrer Unsicherheiten zu gewichten....
    und für die Unsicherheit setze ich hier wie gesagt meine experimentell selber bestimmte, über den Messbereich hinweg durchschnittliche relative Standardabweichung (z.B. 10%) ein, genau wie du, wenn du in deinem Beispiel von "10%" sprichst.
    Was wäre dein besserer Gegenvorschlag?
    ·±≠≡≈³αγελΔΣΩ∞ Schachroboter:www.youtube.com/watch?v=Cv-yzuebC7E Rasenmäher-Robot:www.youtube.com/watch?v=z7mqnaU_9A8

Seite 2 von 7 ErsteErste 1234 ... LetzteLetzte

Ähnliche Themen

  1. Sensorfusion Kompass und Ultraschall (Zeitstempel?)
    Von BattleBot im Forum Robby RP6
    Antworten: 1
    Letzter Beitrag: 13.01.2013, 02:46
  2. [ERLEDIGT] Infos zu den Themen Sensorfusion / Kalman-Filterung?
    Von katakombi_ im Forum Sensoren / Sensorik
    Antworten: 2
    Letzter Beitrag: 28.01.2005, 18:44

Berechtigungen

  • Neue Themen erstellen: Nein
  • Themen beantworten: Nein
  • Anhänge hochladen: Nein
  • Beiträge bearbeiten: Nein
  •