Also über die Basics von Schrittmotoren bin ich schon hinaus, wie die und die Treiber funktionieren ist mir recht gut bekannt.

@HaWe: du denkst falsch, außerdem schrieb ich größerer Luftspaltdurchmesser, nicht größerer Luftspalt. Was passiert, wenn man einen Pol umpolt? Es entsteht eine magnetische Kraft zwischen diesem und dem Permanentmagneten im Rotor, diese ist von der Feldstärke des Permanentmagneten und den Wicklungsparametern des Pols und des Stroms abhängig. Das Drehmoment ergibt sich dann mit M=F*r. Das bedeutet, je größer der Radius, desto größer das Drehmoment. Da man dann wahrscheinlich mehr Pole auf den Umfang verteilt, ergibt sich damit auch eine geringere Drehzahl, was in dem Falle aber nicht schlimm wäre. Das mit dem Anfahren sehe ich jetzt weniger als Problem, das lässt sich ja auf das Trägheitsmoment anpassen, allerdings ist das wirklich das Problem. Angenommen man erhält jetzt vereinfacht das doppelte Drehmoment, wenn man den Durchmesser verdoppelt. Würde sich das Trägheitsmoment auch verdoppeln, wären genau die gleichen Beschleunigungen möglich (alpha=J*M, also Winkelbeschleunigung ist Trägheismoment mal Drehmoment). Nun wächst das Trägheitsmoment aber mit der Größe in der vierten Potenz, also wesentlich stärker als das Drehmoment selbst. Daher machen da Getriebe auch besonders viel Sinn, da diese ebenfalls das Massenträgheitsmoment runtertransformieren. Ich erinner mich an die Formel J_red=J*i² oder in die Richtung. Also bei einer Untersetzung 2:1 wäre es so, als würde der Motor nur 1/4 des Trägheitsmoments antreiben müssen.

Aber noch ein anderer Gedanke: eine größere träge Masse führt ja auch dazu, dass die Eigenfrequenzen niedriger werden. Dadurch würde es doch wirklich nur beim Anfahren mal kurz etwas knurren und das wars. Bei sowas würde ich auch gar nicht auf die Idee kommen, es ohne Beschleunigungsrampe anfahren zu wollen. Außerdem, wenn man mit Mikroschrittansteuerung fährt wird ja auch gleichzeitig die Schrittfrequenz höher, was noch günstiger gegen etwaige Eigenfrequenzen ist.

Für den Aufbau hatte ich jedenfalls mal was zurechtkonstruiert:
Klicke auf die Grafik für eine größere Ansicht

Name:	Torquestepper.png
Hits:	12
Größe:	21,3 KB
ID:	33006 Klicke auf die Grafik für eine größere Ansicht

Name:	Torquestepper2.png
Hits:	12
Größe:	41,8 KB
ID:	33008
Zum Vergleich hier der Aufbau eines herkömmlichen Hybridschrittmotors:
Klicke auf die Grafik für eine größere Ansicht

Name:	220px-Struttura_motore_passo-passo.jpg
Hits:	12
Größe:	9,8 KB
ID:	33007
Das in meinem Bild wäre so etwa das Prinzip Hybrid-Schrittmotor, nur umgekrempelt, innen sitzt der Stator mit insgesamt 12 Spulen (3 Polpaare je Phase, wobei sich das auch anpassen ließe) und außen der Rotor, bestehend aus zwei Eisenringen mit abwechselnden Zähnen. In die Löcher würden 24 Neodymstabmagnete in gleicher Orientierung eingelassen werden. Dabei stellen die Farben die Polung dar, also grün für Südpol und rot für Nordpol, wobei es auch umgekehrt funktioniert. Die Wicklungen wären hier abwechselnd die beiden Phasen und jede Phase wird von Pol zu Pol in umgedrehter Richtung gewickelt. In dem Bild ist nur eine Phase aktiv (rot+grün) und die andere abgeschaltet (grau). Die Zinken jeder Farbe stehen sich dabei ziemlich gut gegenüber, während die Grauen um einen viertel Zinken versetzt stehen.

Ich hatte auch vorher ein wenig nachgerechnet, ich hatte einen alten Schrittmotor zerlegt und geguckt, wie der aufgebaut ist. Der hat auf dem Rotor zwei gezackte Eisenkränze, die auf einen runden Ferritmagneten gepresst sind. Jeder Kranz hat 25 Zähne, da sie um einen halben Zahn versetzt sind macht das 50 Pole für den Rotor und da es zwei Phasen gibt führt das zu 100 Vollschritten, was auch mit der Angabe von einem Schrittwinkel von 3,6° hinkommt. Jedenfalls hatte ich ein wenig herumprobiert und bin dabei beispielhaft auf eine Zähnezahl von 249 gekommen, diese Zahl habe ich auch für die Komponenten in dem Bild verwendet. Anscheinend muss die Zähnezahl eine ungerade Zahl * Anzahl der Wicklungspaare pro Phase sein, in diesem Fall wären es 83*3, beim zerlegten Motor 25*1. Jedenfalls würde ich damit auf 996 Vollschritte pro Umdrehung kommen, was sich mit beispielsweise 1/16-Schritt-Modus auf 15936 Schritte verfeinern ließe. Das sind 0,023° bzw. 1,36 Winkelminuten. Mir ist allerdings auch bewusst, dass Mikroschritte nicht sehr genau sind, allerdings sollten sie für einen wesentlich ruhigeren Lauf und weniger Resonanzen sorgen. Außerdem verliert ein Schrittmotor wenn dann ein Vielfaches von 4 Vollschritten, da das die Stellen sind, an denen das Feld einrasten kann. Das ändert sich auch bei feinerer Mikroschrittauflösung nicht.