ja, du hast Recht, da existieren schon sehr mächtige Bibliotheken. Ich war selber beim Entwickeln überrascht, wieviel Rechenpower samt RAM tatsächlich verbraten wird, und es macht auch klar, dass wirklich leistungsstarke NNs nur auf Grossrechnern laufen (für Meteorologie oder zum Go-Spielen) - das zumindest war mir allerdings schon klar.
Für mich als Laie stand aber selbst bei den allerersten Anfängen mit einer Bytecode-Interpreter-VM auf dem Lego-NXT (NXC) und dann eben auch auf dem Arduino Due (C++) zunächst die reine Implementierung das Ziel - erst nur für FF-Netze, und dann für Backpropagation-Netze mit und ohne Rückkopplung - in beiden Fällen aber mit frei skalierbarer Architektur, nur begrenzt durch den - sehr begrenzten - Speicher, und außerdem mit der Möglichkeit, sowohl lokal zu trainieren, die Trainingsergebnisse zu speichern (als AI-Gehirn) und dann wechselweise auch weiter zu machen im Ausführungsmodus, und auch dann ebenfalls jederzeit wieder durch weitere Lernschritte optimierbar. Und all das auf kleinen embedded Systemen ohne Vernetzung mit Host-Rechnern, das war meine persönliche Herausforderung.
In beiden Fällen aber handelt es sich ja um assistiertes Lernen "am Fehler", durch assistiert gestartete Fehlerminimierungs-Algorithmen.
So lernt ein Mensch (oder ein Tier) aber ja nicht, sie lernen am Erfolg, durch positive Verstärkung (behaviouristisch betrachtet).
Dieser behaviouristische AI-Ansatz interessiert mich als nächstes großes Forschungsthema, zunächst sicher auch assistiert, und natürlich später auch selbsttätig, selbst-verstärkend.![]()
Lesezeichen