-
-
Um die Bewegung eines bewegten Koordinatensystems bezüglich eines festen Koordinatensystems zu beschreiben, kann man folgendermaßen vorgehen: Eine allgemeine Bewegung setzt sich zusammen aus einer Translation und einer Rotation um einen momentanen Punkt. Die Translation ist ein Vektor[x,y,z]. Die Rotation stellt man zweckmäßigerweise in einer Rotationsmatrix dar. In dieser Matrix stehen die entsprechenden Parameter die die Rotation beschreiben (Eulerwinkel, Kardanwinkel, Eulerparameter,...). Wenn du nun einen Punkt in deinem bewegten Kos hast und den mit der (inversen) Rotationsmatrix multiplizierst, bekommst du die Koordinaten, die er im Kos vor der Drehung haben würde. Wenn du nun noch den Verschiebungsvektior abziehst hast du die Position im festen Kos. Als Winkel würde ich Kardanwinkel nehmen, die sind für solche Probleme recht anschaulich.
( siehe Automobil: gieren, nicken, rollen) Wenn du also die Drehung um die z-Achse erfassen kannst, hat deine Matrix nur eine Veränderliche. Und du kannst die Position relativ einfach rückrechnen.
Ich würde mal bei Google schauen unter Kinematik, Robotik, Koordinatentransformation, Mehrkörperdynamik, Relativkoordinaten etc.
MfG Distel
Berechtigungen
- Neue Themen erstellen: Nein
- Themen beantworten: Nein
- Anhänge hochladen: Nein
- Beiträge bearbeiten: Nein
-
Foren-Regeln
Lesezeichen