Alles andere wird zu schwer, dem stimme ich zu. Doch dass Alu zu sehr schwingt, das bezweifle ich. Stell dir vor wir bauen so einen Arm wie im 1. Video, dazu kämen nun Alurohre zum Einsatz von 80mm Durchmesser und einer Wandstärke von z.B. 2 mm. Nun stell dir mal die nötige Kraft vor, um so ein Rohr (in einer Länge von z.B. 300mm) zu verformen. Dazu kommt dass in dem Rohr noch die Welle liegt, welche das Rohr ebenfalls stabilisiert. Das Gewicht eines solchen Armes wäre sehr gering, so dass auch nicht so eine enorme Massenträgheit entsteht. Da wette ich sofort einen Kasten Bier drauf, dass unsere kleinen Motoren nicht die Kraft aufbringen (bei einem realen Einsatz) um so ein 300mm langes Rohr mit 80mm Durchmesser und einer Wandstärke von 2mm (auf einem andern Rohr als Welle gesteckt) so weit zum schwingen bringen kann, dass sich dieses merkbar auf unsere Bestückung auswirken würde. Schau dir mal die Professionellen Maschinen an, die haben einen schweren Klotz mit 8 oder 10 Bestück-Köpfen und verfahren "erheblich" schneller als wir. Diese Einheit ist auf einer Alu-Konstruktion von >1m Länge montiert. Befindet sich der Kopf nun in der Mitte der X-Achse und die Y-Achse verfährt mit voller Geschwindigkeit, dann müsste man demnach richtig Probleme bekommen mit den Schwingungen, aber trotzdem setzt z.B. die Panasonic CM noch 01005 !!! Bauteile ordentlich auf die LP. Es kommt halt immer darauf an wie viel Kraft einwirkt und welche Form das Trägermaterial hat.
In Fall des Roboter-Arms: Ein Alurohr verformt sich nicht so leicht wie eine Alustange, dazu würde das ganze relativ leicht sein und zu guter Letzt hat ja dafür ja auch noch die Rampen.
Tun sie das? Ich sagte niemals dass ich dagegen bin die klassische Variante zu bauen. Drücken wir es mal so aus: "Ich ermittle in allen Richtungen"
Grundsätzlich bin ich für alles offen, sofern ich denke es bringt uns irgendeinen Vorteil. Solange die Maschine kompakt genug bleibt dass man diese noch in mein Auto bringt (Skoda Fabia Kombi) und leicht genug bleibt dass man die notfalls auch alleine "schleppen" könnte ist mir die Bauform eigentlich egal. Sofern irgendwelche Anbauteile schnell (und Werkzeuglos) entfernt werden können und ohne großen Justier-Aufwand wieder montiert werden können wäre ich auch noch damit einverstanden, aber auf jeden Fall will ich die Maschine in mein Auto bekommen und in wenigen Minuten am Einsatzort aufstellen können.
Das Gewicht sollte 40 KG nicht überschreiten, ansonsten wird es für mich unmöglich die Maschine alleine "unfallfrei" ins Auto zu bekommen.
Das will ich auch. Selbst wenn ich den niemals benutzen würde, dann wäre es dennoch ein misslungenes Projekt.
Was genau meinst du mit "produktiv arbeiten"? Wenn du damit Prototypen bestücken willst sollte das ausreichen, aber wenn du vor hast größere Stückzahlen zu produzieren (z.B. um diese zu verkaufen), dann sollte man sich vielleicht schon mal Gedanken machen ob man nicht besser mehrere Bestück-Köpfe verwendet. Bei der "klassischen" Variante kann man später aber immer noch "aufrüsten", was mehrere Bestück-Köpfe betrifft. Das ist ja der eigentliche Vorteil der klassischen Konstruktion, dass man damit mehr Gewicht bewegen kann.
Kein Problem. Verstehe mich bitte nicht falsch, ich versuche dich nicht davon abzubringen, sondern ich zähle Vor- und Nachteile auf, welche ich in den verschiedenen Methoden sehe (es sei dahin gestellt, ob diese auch zutreffen). Wie ich im vorherigen Beitrag schon geschrieben habe "ziehe ich mit". Nur weil viele Wege nach Rom führen bedeutet das nicht, dass man auch verschiedene Wege nutzen muss.
Ne ne, das wäre grundlegend anders, wenn wir beide unser eigenes Süppchen kochen würden. Der Arbeitsbereich wäre verschieden groß, Endschalter wären völlig anders aufgebaut, usw.
Auch die Ansteuerung wäre völlig anders (Anzahl der Schritte, "welche" Achse muss verfahren, usw.). Die Vorteile eines "Gemeinschaft-Projekts" überwiegen die Vorteile des "Individual-Projekts" um Längen, denn Fehler können von 2 Personen gleichzeitig gesucht werden, Maschinenbauteile brauchen nur einmal entwickelt werden, usw.
Nun ja, ich muss das Rad ja nicht komplett neu erfinden. Es gibt ja schon funktionierende Lösungen, welche ich halt nur "anpassen" müsste. Sollten die Ports oder die Geschwindigkeit nicht ausreichen kann ich auch mehrere µC einsetzten, die kosten ja fast nichts.
Gewindestangen sind ungeeignet, da wäre die Lotpaste getrocknet bevor die LP fertig bestückt ist. Die Schubladenführungen würden sich jedoch eignen, wenn diese kein Spiel haben. Ich habe auf Youtube ein Video gesehen, wo jemand Schubladenführungen so umbaut, dass diese spielfrei waren. Allerdings ist der Wirkungsbereich zu gering und das wäre mir auch zu aufwändig, denn die Ersparnis hält sich in Grenzen (hochwertige Schubladenführungen sind auch nicht billig). Welche Führung mir jedoch gefällt ist die mit dem Vierkantrohr und den 4 Kugellagern. Das ist spielfrei, günstig, wartungsarm und leichtgängig (wenig Roll- und Reibungswiderstand).
Der einzige Nachteil den ich darin möglicherweise sehe ist, dass diese Konstruktion wahrscheinlich lauter würde, da das Vierkantrohr einen prima Resonanz-Körper darstellen würde, aber vielleicht kann man die Geräuschentwicklung auch noch reduzieren (Rohr mit Dämm-Material füllen, oder so etwas).
Ja, aber das meinte ich nicht. Mir ging es um die Software-Lösung. Da hatte ich aber noch nicht bemerkt dass dieses eine "professionelle" Maschine darstellen soll. ...sorry, aber ich bin immer noch entsetzt
Nun nochmal zu den Spindeln:
Bitte nicht falsch verstehen, das ist nur ein weiterer Vorschlag ...soll nicht heißen das ich gegen Spindeln bin ...und zwar:
Wenn man statt Spindeln Zahnstangen nutzen würde (direkt auf dem Boden geschraubt), dann hätte man folgende Vorteile:
-Man käme ohne Linear-Führungen aus, da diese gleichzeitig als Linear-Führung dienen würden
-Man könnte diese erweitern, indem man ein weiteres Stück "Passgenau" dahinter montiert.
-Es wären sehr hohe Geschwindigkeiten möglich (allerdings verbunden mit dem Verlust an Genauigkeit)
Folgende Nachteile fallen mir dazu ein:
-Empfindlich gegen Schmutz (Bauteile welche auf die Zahnstange fallen, usw.)
-Vermutlich teurer als Spindeln+Führungen
Hier wäre halt der Vorteil, das man variabler wäre, indem man diese erweitern kann. Ich denke jedoch dass die Nachteile überwiegen, aber erwähnen wollte ich diese Möglichkeit dennoch.
Und nun noch eine Idee um die Geschwindigkeit zu erhöhen, ohne auf die Genauigkeit zu verzichten (mich wundert das so etwas nicht in professionellen Maschinen verwendet wird):
Der ersten Bestückautomat, an dem ich gearbeitet habe hatte einen Revolverkopf. Der Kopf war fest montiert und stattdessen wurden die LP und Feeder verfahren.
Das bringt einige Nachteile mit sich:
-Der Schlitten, auf dem die Feeder montiert sind wiegt viel und es sind Mords Motoren und Spindeln nötig. Zudem ist die Maschine tierisch laut.
-Bereits bestückte schwere und hohe Bauteile (Spulen, Elkos) können verrutschen, wenn die LP zu schnell bewegt wird, was die ganze Angelegenheit recht langsam macht
-Die Maschine ist wahnsinnig groß, weil die Feederschlitten viel Platz brauchen und auch der Bestückbereich ist riesig, da die maximal LP-Größe x2 genommen werden muss, da diese ja verfahren wird
...lauter Nachteile, aber dennoch erwähnenswert, denn:
Wenn man die Maschine baut wie geplant (der Bestück-Kopf verfährt) und eine sehr große Steigung bei den Spindeln wählt, dann ist die Maschine schnell, aber leider auch ungenau.
Beispiel (völlig übertrieben, ist halt nur ein Beispiel):
Spindel-Steigung: 25mm
Übersetzung: 4:1
Verfahrweg pro Umdrehung = 100mm
Bei Verwendung von Halbschritten (im letzten Stück) wären das also 400 Schritte, sprich 0,25 mm ---> zu ungenau!
Wenn man nun jedoch den Tisch mit der LP um +-1mm verfahren kann, braucht man ja gerade mal 2mm mehr Platz in X und Y. Angenommen man bestückt nun ohne Bauteilerkennung und die Rampen und Halbschritte lassen wir mal außen vor. Bei einer Distanz von 20 cm zwischen Abholposition und Bestückposition wären also 2 Motorumdrehungen nötig. Angenommen alle Motoren werden gleich schnell angesteuert, dann hätten die Motoren im Tisch also 2 Umdrehungen Zeit ohne dass die Geschwindigkeit reduziert würde. Um 0,5 mm in 2 Umdrehungen zu erreichen sind bei 200 Schritten 0,00125 mm pro Schritt nötig. Diese Genauigkeit sollte selbst für 01005er Bauteile mehr als ausreichend sein.
...ok, das kann man wegen dem Spiel nicht ganz so rechnen, aber es ging ja auch nur darum meine Idee zu verdeutlichen. Sollten wir also wegen einer großen Geschwindigkeit zu ungenau werden könnte man das auf dieser Weise locker kompensieren. Es wären halt 2 weitere Achsen nötig. Bei 0,25 mm pro Sekunde gibt es auch kein Problem mit verrutschenden Spulen/Elkos/usw.
Ich halte das selber für völlig überflüssig, aber da mir diese Idee durch den Kopf gegangen ist wollte ich es halt auch mal erwähnen. Theoretisch könnten wir die Geschwindigkeit also soweit erhöhen, dass das Bauteil gerade noch an der Nozzle bleibt, ohne dass es zu ungenau werden würde. Unsere Motoren werden das nicht einmal annähernd schaffen, aber rein theoretisch könnte man die Genauigkeit in Revision 2 noch mal erheblich erhöhen (ohne Geschwindigkeitseinbußen).
Lesezeichen