Sorry, daß meine Antwort so spät kommt, aber ich habe erst gerade diesen Thread entdeckt...

Ich arbeite seit über 10 Jahren als Einrichter für SMD-Bestückungslinien. Die Bauteilerkennung wird durch 3 Methoden erreicht (vielleicht gibt es auch mehr, ich kenne jedoch nur diese 3):
1.) 2D-Erkennung: Wie schon mal erwähnt wird ein "Foto" des Bauteils gemacht.
2.) 3D-Erkennung: Ein Laser scannt die Unterseite ab und kann somit Höhenunterschiede erkennen (z.B. beim BGA von Vorteil)
3.) Line-Sensor: Ein Laser ist seitlich montiert und vermisst die Höhe des Bauteils. Der Line-Sensor wird nur in Verbindung mit der 2D-Erkennung benutzt. Er ist nicht unbedingt nötig, da man die Höhe auch anders vermessen kann.

Je nachdem welche Bauteil-Klasse für dieses Bauteil gewählt wurde wird nach verschiedenen Merkmalen gesucht.
Die einfachste Methode ist die Außenkontur-Erkennung. Das Bauteil wird vermessen (Länge, Breite) und mit den Soll-Werten verglichen. Ist es außerhalb der Toleranzen (z.B. hochkant an der Pipette) wird es in einem Sammelbehälter abgeworfen, ansonsten wird die Lage bestimmt (versetzt?, verdreht?) und korrigiert. Die Erkennung funktioniert entweder nach der Schatten-Methode (wird heutzutage kaum noch verwendet) oder nach der Graustufen-Methode.
Je nach Bauteil werden verschiedene Klassen benutzt. Für ein Widerstand benutzt man oftmals nur eine Außenkontur-Erkennung, oder (besser) mit Anschlußflächen-Erkennung. Das funktioniert so, dass die Gesamtlänge des Bauteils eingegeben wird und die Größe der Anschlußflächen. Nun wird das Foto nach hellen Flächen untersucht, welche die Größe der Anschlußflächen haben. Ist ein Bauteil nun nicht mittig unter der Pipette wird die Differenz beim Bestücken berücksichtigt. Das gleiche gilt für die Verdrehung.
Wenn man nun z.B. eine Gehäuseform für einen QFP anlegt, dann benötigt man die Maße des Gehäuses, die Gesamtmaße (Gehäuse + Beine), die Beinbreite und den Pitch. Die Beinlänge kann die Maschine selber errechnen ((Gesamtgröße - Gehäusegröße) / 2).
Die Höhe des Bauteils ist ebenfalls wichtig. Zum einen um die Kamera richtig zu fokussieren und zum anderen um das Bauteil "sanft" auf die LP zu setzen. Gibt man die Höhe zu hoch ein, dann würde das Bauteil auf die LP "fallen", wenn man die Höhe zu gering eingibt würde das Bauteil mit zu viel Druck auf die LP gesetzt. Da die Pipetten/Bestückköpfe gefedert sind hat man jedoch einiges an Toleranz.
Beim BGA gibt man die Anzahl der Balls an, sowie deren Größe und Anordnung (versetzte Reihen, ...). Die Höhe der Balls wird wieder errechnet (Gesamthöhe, Gehäusehöhe). Hier ist eine 3D-Kamera von Vorteilen, denn die 2D-Kamera erkennt nicht wenn ein Ball fehlt. Da das "Pad" ebenso hell auf dem Foto ist wie der Ball wird ein fehlender Ball in der Regel nicht erkannt (mit etwas Glück bei Helligkeitsunterschieden schon). Eine 3D-Kamera hingegen erkennt die Höhe jedes Balls.
Bei besonderen Gehäuseformen (Stecker, BGAs mit ungeordneten Balls, ...) kann man auch verschiedene Bereiche eingeben, um somit eine möglichst gute Erkennung zu erzielen.

Zum Thema Preis:
Ein Bestückautomat kostet etwa soviel wie ein Auto. Diese Aussage ist recht schwammig, denn es gibt gebrauchte Autos, neue Autos, Kleinwagen, Oberklasse-Autos, Premium-Sportwagen, usw.
Bei den Bestückautomaten ist es das gleiche, die kann man neu und gebraucht kaufen. Es gibt ganz einfache "halbautomatische" und mit allen denkbaren Extras ausgestattete Vollautomatische Bestückautomaten.
Zu einer Bestück-Linie gehören jedoch mindestens noch ein Siebdrucker, ein Ofen und die Transportbänder. Oft sind auch noch automatische Inspektionen, Scanner usw. in einer Linie integriert.
Eine Bestücklinie kann also durchaus mehrere Millionen kosten.

Sollten weitere Fragen diesbezüglich bestehen, dann nervt mich ruhig

Mal was anderes...
Hat schon mal jemand mit dem Gedanken gespielt sich einen SMD-Bestücker selber zu bauen?
Ich hätte da schon ein großes Interesse dran.
Was mir so vorschwebt ist ein einfacher, aber vollautomatischer Bestücker.
Die Geschwindigkeit wäre mir da völlig egal, da es im Hobbybereich auch eine Stunde dauern darf bis eine LP bestückt ist. Hauptsache die LP ist fertig bestückt bevor die Lotpaste angetrocknet ist .
Ein Problem wäre die Zuführung der Bauteile. Ein Feeder (Förderer) kostet 1-2 tausend Euro und bei einem Bauteilspektrum von z.B. 100 Bauteilen wäre alleine dafür schon ein "Einfamilienhaus" vom Preis her fällig.
Automatische Feeder fallen somit aus. Meine Idee wäre stattdessen Trays und "aufgeklebte Gurtstreifen zu benutzen. Die Board-Kamera (welche z.B. die Passer-Marken der LP erkennt) könnte auch dazu benutzt werden um die Bauteile in den Gurt-Taschen zu erkennen, ansonsten müssten die Gurtstreifen ja auf 1/10 Millimeter genau geklebt werden, was ziemlich unrealistisch wäre. Dieser Umstand würde die Bord-Kamera zwar zwingend nötig machen, dadurch ist jedoch auch eine weitaus genauere Bestückung möglich.
Da wir sicher alle kein Geld scheißen können müsste der Bestücker so billig wie möglich werden.
Meine Ideen zur Kosteneinsparung wären da z.B.:
-Nur eine Kamera verwenden. Diese sollte von oben herunter schauen (Board-Kamera) und fest am Bestückkopf montiert sein. Diese Kamera könnte nun also erkennen wie die genaue Lage der LP ist (durch Passer-Marken) und wo genau das abzuholende Bauteil liegt. Über 2 fest installierte Spiegel könnte diese Kamera auch gleichzeitig als Bauteilkamera verwendet werden, welche das Bauteil von unten anschaut. Vielleicht könnte man dafür sogar eine ausgediente Digitalkamera verwenden (Makro, usw. wären da schon sehr praktisch).
-Für die Schrittmotoren könnte man die Motoren von ausgeschlachteten Tintenstrahl-Druckern oder Flachbett-Scanner verwenden. Diese haben zwar wenig Leistung, aber da die Geschwindigkeit unrelevant ist kann man ja Getriebe verwenden.
-Als Nozzle (Pipette) wären vielleicht die Spitzen einer Vakuum-Pinzette geeignet, die müsste man dann nur noch federn

Meint ihr, dass diese Komponenten geeignet wären?