Servus alduro,
ich war mal eine Woche offline. Möglicherweise haben sich einige Fragen bereits geklärt.
Der fehlende Summand ist dynamisch. Es geht darum, dass eine Schwungmasse beim Beschleunigen (Ableitung der Winkelgeschwindigkeit nach der Zeit > 0) Drehmoment aufnimmt, beim Verzögern (Ableitung der Winkelgeschwindigkeit nach der Zeit < 0) Drehmoment abgibt.
Damit bekommt man die vollständige Gleichung, wobei man gleichzeitig auch eine Aussage über die Änderung der Drehzahl über der Zeit bekommt.
Anschaulich ist das ganze eigentlich klar:
Wenn die antreibende Drehmoment an einer Welle größer ist als das verbrauchte, dann wird die Drehzahl zunehmen (und umgekehrt).
Wie schnell die Welle hochdreht ist vom Trägheitsmoment abhängig, das es zu ermitteln gilt.
Hmm ... Trägheitsmoment der Welle ,wo soll ich das herzaubern ??
Drei Möglichkeiten:
1. Angabe vom Hersteller, 2. Messen oder 3. Rechnen (aus der Geometrie).
Falls 1. nicht zu bekommen ist, ist wahrscheinlich 3. am einfachsten.
Man muß das nicht sehr detailliert machen, interessant sind in erster Linie Massen, die weit von der Achse entfernt sind, oder wenn es noch irgendwo eine Übersetzung ins Schnelle gibt. Der Hauptanteil ist wahrscheinlich das Schwungrad vom Motor.
Wobei bei deinem Momentengleichgewicht meiner Meinung nach die Vorzichen nicht stimmen . Das Motordrehmoment dreht doch anderes herum , als die Momente der Verbraucher !?!
Naja, wenn wir z.B. das antreibende (Motor)drehmoment positiv definieren, und die bremsenden Momente negativ, dann muss die Summe eben Null ergeben. Im Vorzeichen steckt eben die Information, ob antreibend oder bremsend.
Und woher kommt die Abhängigkeit von der Drehzahl ?
Das Moment des Motors ist eine Funktion von diversen Eingangsgrößen (hauptsächlich Drosselklappenwinkel, aber auch von der Drehzahl.
Im allgemeinen wird von der Motorenherstellern eine Kurve veröffentlicht, die das abgegebene Moment (als Funktion der Drehzahl) bei Vollast (also maximal geöffneter Drosselklappe) zeigt.
Bei minimal geöffneter Drosselklappe weiss man, das das abgegebene Moment bei Leerlaufdrehzahl Null ist, bei höheren Drehzahlen negativ, Das maximale Schleppmoment eines Motors wird in der Literatur bei ca. 25 bis 30% des Maximalmoments bei Vollast angegeben (Erfahrungswert).
Was zwischen der geöffneten und der geschlossenen Drosselklappe liegt, wird man wohl versuchen müssen zu interpolieren, linear ist das sicher nicht (das haben wir schon weiter oben diskutiert).
Bei den Verbrauchern wird man das Drehmoment am einfachsten über die entnommene Leistung (hydraulisch, elektrisch) und einem (anzunehmenden) Wirkungsgrad abschätzen. Hydrodynamische Laggerreibung und Lüfter geben natürlich auch eine drehzahlabhängige Verlustleistung, inwieweit Du das Modell detaillieren willst, liegt bei Dir.