-
-
Ein genetischer Algorithmus ist eine sich selbst anpassende Programmsequenz. Man setzt ein Ergebnis fest und lässt diesen Algorithmus wiederum dafür sorgen, dass er "lernt" das Egebnis mit den gegebenen Umständen zu erreichen. Gen. algorithmen werden in nicht linearen Bereichen verwendet.
So verwenden z.B. Programme, die Pflanzenwachstum simulieren gen. Algorithmen, um deren Wachstum realistisch zu machen(reaktion der Zellen auf Grund der Umweltbedingungen unter der Berücksichtigung des Ergebnisses, was eine ideale Ausleuchtung der Pflanzen sein mag), auch das Grafikprogramm GIMP nutzt genetische Algorithmen, um ein Muster zu erzeugen, das vom Anwender angepasst werden kann. Dabei erzeugen genetische Algorithmen ein Flammenmuster, jeder algorithmus etwas anders. Der Benutzer wählt die Form aus, die ihm am besten gefällt. Danach werden die algorithmen neu gemischt, wobei die Vererbung für jenen algorithmus am besten verläuft, die die schönste Form hervorgebracht hat.
Auf diese Weise sind gen. Algorithmen dazu in der Lage so ziemlich alles zu machen.
Der Zustand des Überlebens ist auch für uns Menschen nur an wenigen Variblen fest gebunden... z.B. Ernährung, Flüssigkeitszufuhr, etc.
Die Menschliche Umgebung ist komplex, daher gibts auch noch mehr Bedingungen für eine gutes Menschliches Überleben, wie z.B. Gesellschaft, etc.
Dem Roboter kann man aber einige einfachere Grundlagen geben, wie Batteriestatus, Vorsicht vor Hindernissen...
Ein Neuronales Netz kann sich auch überlernen, wenn die Lernfähigleit zu hoch justiert wird. Wenn diese Fähigkeit wie bei uns beim Altern aber kontinuierlich nachlassen würde, könnte man dadurch auch das Überlernen verhindern.
Berechtigungen
- Neue Themen erstellen: Nein
- Themen beantworten: Nein
- Anhänge hochladen: Nein
- Beiträge bearbeiten: Nein
-
Foren-Regeln
Lesezeichen